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Abstract 

It will be shown that the introduction of a fundamental length lo permits the definition of 
commutator rules between different observation systems, represented by the Poincar6 
groups. This fact leads to the model of a quantized De Sitter space, and the formulation 
of a non-local quantum field theory will be obtained. The Dirac spinors will be derived 
from the invariance of the quadratic form, defining De Sitter groups, and a connection to 
Pauli's exclusion principle can be understood by the same reason of a quantised space. 
A description of the structure of elementary particles involves a particular importance of 
the group SU(3). 

1. Introduction 

The intention of this paper is to find a starting-point for an investigation 
of the connection between spin and statistics. Therefore, we look for a 
consequence by applying the time-definition of special relativity to a many- 
body-system, where the particles have to obey the uncertainty relation. I t  
was Pauli (1940) who demonstrated by means of special relativity that 
particles with odd spin must be quantized in agreement with the exclusion 
principle, ff the energy is to remain positive definite. For  particles with 
integral spin, a similar postulate requires that the quantization proceeds 
according to Bose statistics. Pauli derived the fundamental result for 
particles without interactions. But some years later (Streater & Wightman 
1964), the same result could be shown for interacting particles, if divergence 
problems do not exist. I t  is remarkable that only a relativistic theory can 
demonstrate this relationship between spin and statistics. This is the reason 
why this problem will be analysed with the help of  the principles of  special 
theory of relativity to understand the same connection, without using the 
above consistence postulate and having difficulties with interactions. 
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The following conventions of the special theory of relativity will be used: 
Greek indices run from 1 to 4. Latin indices from 1 to 3. We define the four- 
vectors x . '  and x., where x(] ) = let (1), the speed vector/)~ = (vl, vz, Vs), where 
/)2 ~ /312 ~ /)22 _~_ 1)32, and 

L 2 = x " x ,  = xl 2 + x22 + xa 2 + x42 (1.1) 

1 a 2 1 02 
[] = 02/Ox u Ox, = V 2 A (1.2) 

C 2 0 t  2 C 2 0 t  2 

A homogeneous proper Lorentz transformation has to satisfy 

x ,  1 =L"~xv, x " x ,  = (x") '(x,) '  (1.3) 

L ~ L O = 6 o ,  det ILl = + 1  (1.4) 

As we have to consider first Lorentz transformations, where Lj ~ must have 
the following form 

Lj i = ((1 - - / ) 2 / c2 ) -112  - -  1) ~ -q- 6 j  i 

L 2  = (1 - / )2 /c2) - '2  (1.5) 

we do not discuss here transformations with det ILl = -1 .  It is important to 
extend (1.3) to the inhomogeneous Lorentz transformation by adding a 
constant four-vector a,  to equation (1.3): 

x , '  = Lu~ x~ + a u (1.6) 

This equation enables a discussion of the translation group. For  detailed 
representations of the Lorentz group, one should consult a recent work by 
Streater and Wightman (1964). 

The introduction of the inhomogeneous Lorentz group involves the use 
of the homogeneous quadratic form 

--S/z 2 = Xl  2 -~ x2  2 -}- x 3  2 - -  c 2 t 2 - -  au+a u (1.7) 

which may be comprehended as a De Sitter group for each #. 

2. Relativistic Treatment o f  a Many-Body-System 

For every non-relativistic theory it is characteristic that the investigation 
of a many-body-system with a single time for the whole problem is 
sufficient. If  a system of interacting particles with static interactions is 
considered, which must not be assumed in special relativity, the satisfaction 
of the Pauli principle by antisymmetrical wave functions leads to the 
'exchange-interactions' of  quantum mechanics. The fundamental principle 
of special relativity--the equivalence of each observation system and the 
finite speed of interactions or informations, transmitted by a light beam or a 
field--applies to a many-particle-system in the same way as for a many- 
time-system (Dirac, 1935; Landau & Lifschitz, 1967). Because we may 
consider electrons or positrons as 'particles' with a surrounded 'photon- 
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cloud'--and, using this analogy, the nucleons as 'particles' which are 
surrounded by a 'meson-cloud'--we should try to classify the particles 
according to the above consideration about the finite propagation speed of 
items of information. A classification of particles according to the spin will 
result by use of a mathematical formulation. 

(1) Particles of which the state is an object of physical informations 
(space coordinates, speed, momentum, energy, and so on). The 
uncertainty relation does not allow the measurement of all the 
above information at the same time. 

(2) Particles which are used for the transmission of interactions or 
items of information (photons to obtain space coordinates of 
electrons). 

In this picture, the Coulomb interaction between two charged particles is 
represented by an exchange of photons. The emission or absorption of a 
photon by an electron can be characterised through the fact that a particle 
represents a 'source' or a 'dip' of physical information. Another point seems 
to be important. Heisenberg (1942) emphasised in one of his papers that the 
description of particles by a probability behaviour of a 'point charge' 
cannot be justified in very short distances of space and time. The 'over- 
lapping' of 'photon-clouds' is in this case very strong, and therefore we have 
to take into account the creation or annihilation of new particles. Because of 
these problems in high-energy physics we wish to start with 'gedanken 
experiments', which should lead to a key for understanding the exclusion 
principle in a qualitative way, using from the outset the principles of special 
relativity. Two particles and a measurement apparatus form, in the special 
theory of relativity, three equivalent partial systems. Let us consider first 
the two particles. Each one of them can be regarded as motionless. 

Particle 1 rests in ~ '  (xul) ', and with respect to this system particle 2 
shall have the coordinates ~ (x,2). Particle 2 rests in ~ '  (x~2) ', and the 
coordinates of particle 1 are given by ~ (x,l). If  we remember the famous 
question of Einstein: 'What happens at the same time ?', then we must 
conclude that this statement has no physical meaning without any measure- 
ment. Therefore, the emission of a light signal is needed in order to obtain 
the necessary information for a determination of ~ (x,2), if the observation 
point was specified to ~'  (xl) '. According to the principles of special 
relativity an exact measurement of xu and v~ is always possible. In particular, 
a synchronisation of h '  and t2 can be performed, if there is no uncertainty 
relation which restricts the information by a measurement. 

It is absolutely necessary to emit light signals in order to obtain those 
items of information which are required for an application of the Lorentz 
transformation (1.6) 

Lu ~ xv + a~, = x , '  

and to determine the whole system. In quantum theory, it will be shown that 
a light beam has to satisfy the uncertainty relation Ax.Ap~ >~ hi2, It is 
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interesting to note that Heisenberg's uncertainty relation for a material 
particle (for example, an electron), can be formulated only when the light 
beam also satisfies the uncertainty relation. If  there were no restriction on 
A x  and Ap x for the light beam, we would be able to determine the position 
of the electron to an infinite degree of accuracy by a very well-localised 
beam without transferring an appreciable momentum uncertainty to the 
electron in an uncontrollable way (Sakurai, 1967). Then we could also 
determine the electron by virtue of transformation (1.6). In quantum 
theory, the state of two particles is described by ~b(tl) and ~(t2). Hence ~b(t2) 
and tl '  cannot be obtained by one measurement, as there is no possibility of 
a synchronisation of tl' and t2. But a formulation of a commutator rule is 
not possible. A consequence of the impossibility to synchronise tl' and rE, is 
the following agreement with the exclusion principle. For particles of the 
first kind of our classification we cannot find a condition which enables a 
proof  of the statement that more than one particle occupies a quantum state 
at the same time, because this statement can never be the result of a measure- 
ment. 

Now we should investigate another system. We take one particle of the 
first kind of our classification, which shall rest in ~ '  ( x J .  By means of a 
photon-scattering, a measurement apparatus will observe this particle and 
fix its coordinates very sharply to ~o (x,). The momentum or the relative 
speed are not defined. The application of the Lorentz transformation 
(1.6) leads our considerations to the same problem as discussed before. The 
uncertainty relation enables either the knowledge o f x ,  or vi. The knowledge 
of both items of information is not possible, as we need an interacting field. 
Because a light beam, described by the Maxwell equations, which remains 
invariable under a Lorentz transformation has to obey, in addition to the 
uncertainty relation, we may conclude that the determination of x , '  and x,  
by means of the Lorentz transformation cannot be taken into account. This 
is also valid for any other interaction fields, not only for the electromagnetic 
field, as, according to the principles of relativity, the Lorentz transformation 
must be the fundament of every field equation. If  we wish to maintain the 
Lorentz transformation for the description of the connection between x , '  
and x., then this transformation must contain statistical information. From 
a relativistic starting-point, where we must not prefer the time coordinate, 
we may require for micropartMes a non-vanishing commutator 

x ,  xv' -- x~' x , - r  O (2.1) 

Because of the impossibility to determine all information of an application 
of a Lorentz transformation, this commutator must exist. Therefore, we 
have to answer the question, whether it is necessary to start with such a com- 
mutator relation. In the usual relativistic quantum theory we require only 
Lorentz invariance of a measurement, which has been performed by 
any two classical apparatuses. If  the first measurement apparatus observes 
~(~), then the other apparatus must observe k~(~ r) = u. ~(2~), where u is 
an unitary transformation. But we wish not only to regard a particle from 
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different observation systems which are moved against each other but 
also to define those coordinates where a particle rests, and only in that 
system is it justified to use a rest mass of  a particle mo for any calculation. 
The above commutator will lead to the model a of  non-local quantum field 
theory. The connection between the exclusion principle and the relativistic 
many-particle-problem is given by the non-existence of a single time for the 
state vectors. Therefore, the determination of a many-time-problem with 
the help of the Lorentz transformations is not possible, because the un- 
certainty relation does not allow us to know all the information required 
for the application of the Lorentz transformation. The introduction of  
commutator rules of the kind ~ ( t ) t ' - t ' ~ ( t ) r  or ~ ( t ) T ' ( t ' ) -  

~ ' ( t ' )~ ( t )  r 0 seems to be justified in a qualitative way, but the definition of 
commutator rules is very difficult to formulate. It is easy to verify that every 
function ~b(xv) cannot commute with any other function ( Y ( x , ' ) ,  if the 
arguments xv do not commute with x, ' .  

Now we wish to investigate the application of relation (2.1) to the 
quadratic form (1.7) of  the De Sitter groups: 

_S i t  2 ~ x2 _~ y2 q_ z2 _ c 2 t 2 _ a + a .  

This relation (2.1) must be invariable under a homogeneous, proper 
Lorentz transformation, and therefore it is necessary to postulate the 
commutator 

x ~ x f f  - x . '  x ~ =  lo Z ~ . v  (2.2) 
x v x u, _ x u, x v = lo 2 7 uv 

XV Yu Xu' - -  ?u xu '  xv  = I0 2 ~u ]~uv 

=_ lo2 y ~ 

The Lorentz invariance of (2.2) is guaranteed, if ~u satisfies the relation 

77a, = ua v ~,~,. 

We should emphasize that other properties of y~u are o n l y  defined in 
connection with the quadratic form (1.7). A relation between space co- 
ordinates and speed vector can be found by means of the Lorentz trans- 
formation, which depends on v,. This will be our problem. A speed greater 
than that of light is impossible. To find a field equation, we shall use a 
method very well-known from mathematics. In quantum theory each 
canonical quantisation 

[quPj] = iha~j  

may be transformed by virtue of 

in special representations of the dynamical variables. We are able to get the 
Schr6dinger equation as well as the relativistic Klein-Gordon equation. 
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In the same way we can represent equat ion (2.2), using the above relation 
for  differential operators,  if  we form linear combinat ions  

,2  aS aS 
aSx1'(xv) q~ = - to  711 ~ . . . . . .  /o 2 Y14 O X  4 " 

Each opera tor  x , '  can be represented by a linear combinat ion  of  four  
differential operators.  For  this purpose  we use the symbol  ~v, which denotes 
that  we form four linear combinat ions  of  the introduced matr ix  Yr,. N o w  
we will obtain the equat ion 

" ' - l o  2 7 '~ ~ 7 x .  (xO ~ = ox~ 

?"(L,~ x~ + a,)(o = - l o 2 y  ~ 04  (2.3) 
Oxv 

I t  is not difficult to verify that  the introduced lo must  have the dimension of  
a length. This equat ion has to satisfy the principles of  relativity, which are 
guaranteed,  if the introduced matrices 7 v agree with Dirac  spinors 

7 ~ y~ + 7 ~ y~ ~ 23 ~a (2.4) 

The reason for  this fact is the quadrat ic  fo rm (1.7). In  addition, we obtain 
the relation 

a ~  * + yaa~+ = 0 (2.5) 

The invariance of  (2.3) under  a translat ion group is guaranteed.  I f  we 
replace xv -+ x~ + av', then we shall get 

a (  x~ + x~a~ '+ = 0 (2.6) 

Therefore,  we observe that  au is satisfied by the conditions 

ia 4 = (ia,) + = - ia4 ,  a i = at+ = - a ,  ai + ai = -a~ z (i = 1, 3), 

/~ = 4 ~ (ia,) (ia,) + = a42 

With the help of  the quadrat ic  fo rm (1.7) we obtain a second-order  equat ion 

(x 2 + y 2  + z2 _ cZt 2 _ a + a u )  c~, = lo 4 [~b u (2.7) 

The special case a ,  = 0 automatical ly  satisfies relation (2.6). There exists 
some interesting special conditions of  equations (2.3) and (2.5). First we 
choose the corresponding physical conditions, then we are able to get two 
equations,  which are very well known f rom relativistic quan tum theory for  
instance, if  we regard a particle f rom very far distances 

7 v lo 2 ~ = - a .  4~ 

lo* [~dp = a~+ a~ (o (2.g) 

For  this reason it is justifiable to suppose that  the constant  a# has something 
to do with the rest mass of  a particle. A specification to the homogeneous  
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Lorentz group, where a~ - 0, leads directly to theWeyl equation, represented 
by Dirac spinors 

7 ax~ = 0 (2.9) 

Equation (2.3) forms the basis of a discussion for particles with odd spin 
which have to obey to the Pauli principle; equation (2.7) must be used for a 
discussion of Bose particles. In Section 3 we will show that we obtain by 
means of equations (2.3) and (2.7) a quantised De Sitter space, where the 
curvature can only accept discrete values. The group SU (3) seems to play a 
very important role, because the absence of strong interactions will always 
lead to the condition al = a2 = a3, or: a~' = a 2 '  = a 3 ' .  Therefore, we can 
hope to calculate the rest mass of elementary particles when more informa- 
tion about lo is known. 

3. Solut ion o f  the Fie ld  Equat ions 

Equation (2.7) can be solved by the introduction of creation and annihila- 
tion operators. We separate ~bu(xv) = R~(x~)T , ( t )  by means of a constant ~2 
on both sides 

eZ__ 2 lo z 0 z T , (  t ) )~ ~ + a ,  2 - t 

2lo 2~.( t)  2c2at  z - 2lo 2 
X i x~ . 2 ~2 

~.(X,) -- ~ AR.(x D = ~o ~ gu(xi) 
Like the harmonic oscillator in quantum theory we define operators, which 
have to obey the commutator rules for Bose particles 

1 c 
b ' + = ~ ( l o t - c ~ ] l ~  0 ] ,  

1 lx~ 0 

[bk, bz +] = 3kl, 

1o 0],  
b, = V2 \lo + c ~ !  

l (x, o ) ,  bi=  To+iON 
[b~, bt +] = 1 

[bk +, b~ +] = [bk, b~] = [b~ +, bt +] = 0 

[b~, bt] = [bk, b~] = [b~ +, bt +] = 0 

By that means we obtain the results 

22= 2lo2 ( ~  1 bi+bi + ~) = 3 l o 2 + M . 2 l o  2 

M = 2 m + l = O ,  1 , 2 , . . .  (re, l = 0 ,  1 . . . . .  ) 

bt' bt T~ = nT , ,  n + �89 = (2 z + au2)/21o z (n = O, 1 . . . .  ) 

2 2 ~ a .  2, au 2 = 2 1 o 2 ( n - M - 1 )  ( n ~ > M + ] ;  . u = 1 , . . . 3 )  

M = 2m + / ,  resp. l < m - 1 
a4 z = 2lo2(M + 1 - n) (n < M + 1) 

(3.1) 

(3.2) 

(3.3) 
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The conditions a,  - 0 resp. a~a~ = a ,  2, which satisfy the anticommutation 
rules (2.5), are able to be realised by (3.3). It is worth mentioning that the 
harmonic oscillator (3.1) 

and its degeneration degree is discussed in detail by Messiah (1970). 
The solution of the four components q~,(x,) is given by 

q~,(xv) = N. exp {-/o 2 . c /xv  x,}. exp (• xO (3.4) 

We substitute (3.4) into (2.3), and then we will get 

L." = 27~ ~ . c." E ~ 

a~,=TiloZkv~ ~ ( k 4 = ~ = m c 2 1  
hc / (3.5) 

It is not difficult to see that the solution of the one-particle-equation is given 
by a very complicated Gaussian function and plane waves. The Dirac 
equation of a free particle has only the latter solution, and corresponds to 
equation (2.3) if a particle is observed from infinity. But the very rapid 
descension of Gaussian functions permits us to regard a particle in a distance 
of several lengths lo as a 'point'. 

In the special theory of relativity there exists a profound relationship 
between matter and energy. Using the equivalence between matter and 
field we are able to describe the quantisation of the energy-momentum- 
tensor by means of equation (2.3): 

04 
~" (L, * x, + a , )  q~ = -lo a yv ax~ 

We will do this here in the case of the electromagnetic field. It is not necessary 
to couple a particle to an external field, because we can easily verify a possible 
way to obtain expressions for the total energy, momentum, and angular 
momentum 

E = rnc2(1 - ~ ) 2 / c 2 ) - 1 / 2  = mc 2 Lr 

The first three components of the relativistic momentum are obtained by 
rncLi* resp. mcL4 i, and doing the same with the remaining components we 
shall get the corresponding expression for the relativistic angular momen- 
tum. But we wish to compare equation (2.3) with the energy-momentum- 
tensor of the electromagnetic field 

1 
T,j = ~ (E, Ej + H, Hj) - -}(E ~ E~ + H t H,)) 3,j 

T,4 = I (EZ Et + Ht  H,) 
7~z 

The electromagnetic mass is given by U4/c 2, the total energy by 

U, = mcZ L4 4 = f T** d T  ,) 
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In order to find a connection to T~ and to guarantee the satisfaction of the 
conservation of total energy, we have to introduce a 'structure-tensor' for 
the electromagnetic rest mass of  a charged particle: m,,. 

In addition, there must exist a connection between the symmetry of 
m,,  and T~, as from the conservation of  total energy that follows: 

Trmu = -rn44 = - m  

If  the electromagnetic field shows invariance under symmetry transforma- 
tions of the rotation group, then we can conclude that 

mla = m22 = rn33 = -m/3  

But we should mention here that a scattering problem of three or more 
particles, where the 'photon-clouds' show a strong 'overlapping', does not 
allow this conclusion, because a more complicated tensor m,,  is needed. 

Appendix 

We shall now look for a possible way to discuss a two-particle-equation. 
A generalisation to a many-particle-field equation is then not difficult. As 
two particles are observed from a measurement apparatus Z ~ we introduce 
an operator Po a, which shows that particle 1 is regarded by Z ~ Then we 
shall obtain both the Lorentz transformations 

(x.1) ' = Po l (L;  x~ + a~) 
(x.2) ' = Po2(L; x~ + a.) (A .0  

The corresponding field equations are given by 

~2.(x2) ,  r = _ p o  ~ (lo ~ ~ 0r ~ )  (1.2) 

Our starting-point was the fact that we can never obtain any information 
about particles without interacting by means of a field. Therefore, the 
corresponding uncertainty principle should contain the field equation, and 
the commutator rules must represent a particle as a source of an interacting 
field. According to the principles of special relativity, we can observe the 
other particle from the corresponding rest system of one particle. The intro- 
duction of a commutator rules between the particles describes the inter- 
acting field. 

(x~,l) ' = Pz'(L, v x~ + a,) ~ yu (x 1), r = _pzl (10 z y.~ aCU~Ox~] 

(x~,2)'=P12(Lu'x,+a~)-- y"(x~,Z)'~=-PlZ(to2y~O0@~) (A.3) 
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It is to the aim to formulate a product  space with respect to 27 ~ The difficulty 
is to define a scalar product ,  as the introduced ~b is only a Hilbert space for 
far distances; however, we are reminded of  quan tum mechanics, where a 
product  space o f  interacting particles H(1,2)  involves a non-linear, self- 
consistent, field equation. Therefore, we will look for  the possibility o f  
finding a connection to the very well-known non-linear field equations in 
quantum field theory. 
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